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Abstract—All-pairs shortest path problem(APSP) finds a 
large number of practical applications in real world. We owe 
to present a highly parallel and recursive solution for solving 
APSP problem based on Kleene’s algorithm. The proposed 
parallel approach for APSP is implemented using an open 
standard framework OpenCL which provides a development 
environment for utilizing massive parallel capabilities of 
Multi core CPU and Many-Core-Processors such as Graphics 
Processing Unit (GPU). Moreover due to inherent nature of 
data reuse in the algorithm, shared memory of these 
processors is exploited to achieve considerable speedup. Our 
experiments demonstrate a speedup gain  up to 521x over 
NVIDIA GeForce GT 630M GPU and a speedup up to 10x 
over Intel Core i3-2310M CPU.The proposed OpenCL 
solution for  APSP is for directed and dense graphs with no 
negative cycles. Like Floyd-Warshall (FW), this approach is 
also in-place in nature and therefore requires no extra space. 

Keywords—OpenCL; Graphics processing Unit (GPU);All 
Pairs Shortest Path( APSP); in-place; FW(Flowd Warshall); 
RK (Recursive Kleene); Many Core Processors 

I.  INTRODUCTION 

The All-Pairs Shortest Path(APSP) is a well-known 
problem in the field of computer science and has varied 
application areas inclusive of, but not restricted to, IP 
routing, wireless sensor networks, VLSI design and 
Artificial Intelligence. In most of the cases an instance of 
the problem is represented in the form of directed weighted 
graph stored in the form of cost adjacency matrix. 

Consider a weighted graph G (V, E) stored in the 
form of weight adjacency matrix represented by  W where 
,݅〉 ௜௝ϵ W for allݓ ݆〉 ϵ E.

௜௝ݓ

ൌ ቐ
0						 		݂݅	݅ ൌ ݆

,݅〉	݁݃݀݁	݂݋	ݐ݄݃݅݁ݓ ݆〉					 			݂݅	݅	 ് ݆	ܽ݊݀	〈݅, ܧ	߳	〈݆
						ݕݐ݂݅݊݅݊݅ 			݂݅	݅	 ് ݆	ܽ݊݀	〈݅, ܧ	߳〈݆

 

Although the theoretical time complexity of well-known 
existing sequential approaches for solving APSP such as 
Floyd Warshall’s [14] or Dijkstra’s algorithm [21] is 
Оሺ݊ଷሻ, and is reasonably good, but many applications such 
as VLSI design or wireless sensor networks, IP routing for 
large networks [7] etc requires size of input data to be very 

large [2] and in such cases time consumed by algorithm 
grows drastically beyond acceptable levels. 

Parallel approaches for solving APSP may involve running 
a Single Source Shortest Path (SSSP) algorithm for all |V| 
vertices [3] or by using parallel versions of APSP 
algorithms [4][18]or Johnson’s  Algorithm[21]. Although 
these algorithms are in-place in nature and are capable of 
providing high level of parallelism but these algorithms 
lack inherent data reuse and therefore cannot fully exploit 
architectural capabilities of GPU. Bader et al. [6] have used 
supercomputer CRAY MTA-2 to perform breadth-first 
search on very large graph. A considerable high speed up 
can be achieved using such massive parallel computers but 
many core computers such as GPU ( being specialized 
purpose processor) offers high performance at relatively 
very low cost. Penner et al[5][10] have presented algorithm 
optimization for improving cache performance but in 
contrast to this die(chip) area in case of  Many Core 
Processors such as GPU, is dedicated largely for ALU’s 
than cache [23] and therefore only locality of reference 
based  optimization may not prove to be much useful. 

 Contribution of this paper: This paper presents a parallel 
recursive approach for solving APSP problem on large 
graphs using open standard programming framework 
OpenCL that exploits the architectural benefits of Multi 
Core Processors such as CPU or massive Many Core 
Processors such as GPU as a processing device. The key 
features of this approach are highly parallel, high data reuse 
and in-place nature 

Following may be attributed to the key contributions of 
this paper 

 A high level of parallelism is obtained by appropriately 
distributing SIMD (Single Instruction Multiple Data) load 
over CPU/GPU cores in the form of work group  

 By appropriately choosing the block size to fit into local 
shared memory of the GPU to reuse the data in future  

GPU provides large global data share. Blocked parallel 
approach is in-place in nature so no extra memory is needed 
for storing intermediate results and therefore large graph 
problems can also be solved 

Solution is implemented using open standard 
programming framework OpenCL that can be executed 
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over wide variety of low cost hardware such as CPU, GPU, 
FPGA’s and DSP’s etc. and thus provides portable and cost 
effective solution. Rest of the paper is organized as follows. 

Section II puts insight into a brief description of 
OpenCL platform model and GPU as a computational 
resource. Section III describes related work in the field of 
APSP. OpenCL Parallel approaches for solving APSP 
problem is discussed in section IV. Experimental results are 
demonstrated in section V and finally section VI presents 
Conclusion and scope for the future work. 

II. OPENCL FRAMEWORK 

OpenCL is an open standard framework for parallel 
programming composed of several computational resources 
like CPUs, GPUs, DSPs, and FPGAs etc. A considerable 
speed up can be achieved by utilizing all such 
computational resources. The main advantage with OpenCL 
as compared to its counterpart CUDA [15], is its portability 
among cross vendor hardware platforms [25]. 

OpenCL framework comprises of following 
components [23][24]:  

A. OpenCL Platform Model 

OpenCL platform model consists of CPU as a host and 
OpenCL devices such as CPU, GPU or other processors. 
An OpenCL device is a collection of compute units which 
is further composed of many processing elements  

 
Fig. 1. OpenCL Platform Model [24] 

All the processing elements within a compute unit will 
execute same sequence of instructions. While compute units 
can be executed independently 

B. OpenCL Execution Model 

OpenCL execution model comprises of two 
components: a host program that executes over CPU and 
kernel(s) that executes over OpenCL devices. OpenCL 
execution model provides a way for submitting kernels for 
execution. When this command is submitted it creates a 
collection of work-items (threads). Each work-item 
executes the same sequence of instructions as defined by a 
single kernel on different data selected through unique 
identification (global or local). Work-items can be 
organized in the form of workgroups that execute 
concurrently over the processing elements of the same 
compute unit. 

C. OpenCL Memory Model 

OpenCL memory model defines five different regions 
of memory and the way they are related to platform and 
execution models (Fig. 2).  

 Host memory: This memory is limited to host only 
and OpenCL only defines the interaction of host 
memory with OpenCL objects. 

 Global memory: All work items in all work groups 
have read/write access to this region of memory 
and can be allocated only by the host during the 
runtime. 

 Constant memory: Region of memory which stays 
constant throughout the execution of kernel. 
Work-items have read only access to this region. 

 Local memory: Region of memory is local to work 
group. It can be implemented dedicatedly on 
OpenCL device or may be mapped on to regions 
of Global memory. 

 Private memory: Region that is private for work-
tem. 

 
Fig. 2. OpenCL Memory Model [24] 

D. OpenCL Programming Model 

OpenCL supports two programming models:  data 
parallel and task parallel models. However hybrid model 
can also be used. 

III. RELATED WORK 

Many algorithms have been proposed for solving APSP 
problem using Floyd-Warshall (FW) yet there is large scope 
in enhancing its performance. Using Johnson’s algorithm, 
we can find all pair shortest paths in Оሺ݊ଶ݈݊݃݋ ൅ ݊݁ሻ time. 
Johnson’s algorithm uses both Dijkstra [18] and Bellman-
Ford [18] algorithms as subroutines. Owens J. D puts 
insight into GPU computing [22] and a survey on general-
purpose computation on graphics hardware [20].As the 
instances of the problem involving graphs are generally 
represented in the form of adjacency matrix some fast 
matrix multiplication algorithm in [6][19] are also our area 
of concern. 

The work presented in this paper is a recursive parallel 
OpenCL implementation of APSP that can execute on wide 
variety of many core processors and Kleene’s algorithm 
[11] was our starting point  

A sequential divide and conquer approach using R-
Kleene’s algorithm have been proposed for dense graphs 
for APSP in [12]. However our implementation is 512x 
times faster on larger graphs due to massive parallel work-
items (threads) executing simple Comp-Add (Comparison-
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Addition) operations on low power specialized purpose 
cores (ALU’s)    

Similar but independent to our work there are some 
CUDA based implementations for speeding up large graph 
algorithms on GPU [8][16], but they are for vendor specific 
NVIDIA[29] hardware. In contrast to this our solution runs 
on wide variety of platforms/vendor independent 
hardware.CPU implementations have several limitations of 
performance so some cache optimization techniques and 
cache friendly implementations are given in [1][5][10][17] 
using recursion for dense graphs. But unlike cache which is 
exploited by the virtue of locality of reference, local 
memory of GPU can be explicitly exploited and is 
programmer controlled.  

IV. OPENCL IMPLEMENTATION  FOR SOLVING APSP 

PROBLEM 

A. APSP Problem 

APSP is the most fundamental problem in graph theory 
and our solution will follow a well-known algorithm called 
Floyd-Warshall (FW)[21]. FW sequential implementation 
uses three nested loops. 

Consider a weighted graph G (V, E) stored using 
adjacency matrix represented by a weight matrix W where 
௜௝ܹ߳ for all ൏ݓ ݅	, ݆ ൐  .ܧ	߳

w୧୨ ൌ ቐ
0																										if	i ൌ j

weight	of	edge	〈i, j〉														if	i	 ് j	and	〈i, j〉ϵ	E
infinity																																							if	i	 ് j	and	〈i, j〉ϵ	E

 

 
ALGORITHM FLOYD-WARSHALL(W) 
 
1    n← rows (W) 
 ሺ଴ሻ← Wܦ      2
3      for k = 1 to n do 
4       for  i = 1 to n do 
5                for j = 1 to n do 

6     ݀௜௝
ሺ௞ሻ ← ݉݅݊	ሺ݀௜௝

ሺ௞ିଵሻ, ݀௜௞
ሺ௞ିଵሻ ൅ ݀௞௝

ሺ௞ିଵሻሻ 
7                end for 
8          end for 
9      end for 
 

 

Fig. 3. FW Algorithm pseudocode 

B. OpenCL Parallel Implementation of Floyd-Warshall 

 
Parallel implementation of FW algorithm requires 

Nଶ	work items to be created, where N is the total number of 
nodes. So, each work item ሺ݅, ݆ሻ finds the shortest path 
between nodes i and j. In parallel implementation a 2-D 
kernel FW_KERNEL (A, k) is designed as shown in Fig. 5 

Pseudo code for OpenCL parallel FW 
OPENCL_PARALLEL_FW (A, N) is shown in Fig.4, which 
calls kernel FW_KERNEL (A, k) 

 

ALGORITHM OPENCL_PARALLEL_FW(A, N) 
 

1      for k = 1 to n do 
2          for all elements in matrix A, where 1≤ i, j ≤ n in 

parallel do 
3 call FW_KERNEL (A, k) 
4          end for 
        end for 
 

 

Fig. 4. Pseudo code for OpenCL parallel FW algorithm 

 

KERNEL FW_KERNEL(A, K) 
 

1     (i, j) ← getThreadID 
2  A[i, j] ← min(A[i,  j], A[i,  k] + A[k,  j]) 
 

 

Fig. 5. Pseudo code for FW kernel in OpenCL 

In each kth iteration of outermost for loop, ݊ଶ work-
items (threads) invokes kernel that  computes shortest path 
between every possible pair of vertices 〈i, j〉 going through 
no vertex higher than vertex k ,each using its thread_idሺi, jሻ, 
in parallel, where 1	 ൑ 	݅	, ݆	 ൑ 	݊. In final iteration when k 
= n is completed, output matrix A will hold shortest path 
between every possible pair of vertices 〈i, j〉 going through 
no more vertex higher than vertex n that is the shortest 
distance between all-pairs of nodes. 

The theoretical time complexity of parallel Floyd 
Warshall’s algorithm is О(n) because outermost for loop 
executes sequentially О(n) times where as inner parallel for 
statement takes О(1) time, assuming  nଶ processing 
elements 

C. In-place Parallel Recursive approach to APSP problem 
using kleene’s algorithm 

 
The recursive approach for solving APSP is inspired by 

Kleene’s algorithm [2], as shown in Fig.6, for finding 
transitive closure that computes the existence of path 
between every possible pair of vertices〈i, j〉.  

Kleene’s algorithm divides the nodes of the graph into 
	n √s⁄  zones as shown in Fig.7. Nodes 1 to √s will be in 
zone 1, nodes √s +1 through 2√s will be in zone 2, and so 
on. Thus adjacency matrix corresponding to the graph is 
divided into nଶ s⁄  sub matrices each having size	√s ൈ √s. A 
sub matrix M୧୨ refers all the edge from nodes in zone i to 
nodes in zone j. 

ALGORITHM KLEENE’S_TANSITIVE_CLOSURE(A, N) 

1/* Divide the graph ’A’ into 	݊ ⁄ݏ√  zones */ 
2   for k = 1 to 	݊ ⁄ݏ√  do 
௞,௞ܯ	݁ݐݑ݌݉݋ܥ */ 3

∗ , the transitive closure of ܯ௞,௞*/ 
௞,௞ܯ =௞,௞ܯ 4

∗  
5 for i = 1 to  	݊ ⁄ݏ√  do 
6 for j = 1 to  	݊ ⁄ݏ√  do 
 ௞,௝ܯ × ௞,௞ܯ × ௜,௞ܯ	+ ௜,௝ܯ=௜,௝ܯ   7
8 end for 
9 end for 
10    end for 
 

Fig. 6. Pseudo code for FW kernel in Open 
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 ଵ,ଵܯ

ଵ,௡ܯ ⋯ ଵ,ଶܯ √௦⁄  

ଶ,௡ܯ ⋯ ଶ,ଶܯ ଶ,ଵܯ √௦⁄ , 

⋮ ⋮  ⋮ 

௡ܯ √௦	,ଵ⁄ ௡ܯ  √௦	,ଶ⁄ ௡ܯ ⋯  √௦⁄ ,௡ √௦⁄  

Fig. 7. A n×n matrix having 	n √s⁄  Zones 

 Each entry e୧୨ ∈ 	M୧୨	 refers to the shortest path from 
every possible vertex from zone ‘i’ to zone ‘j’ going 
through no more zone greater than zone ‘k’ and is 
computed using 	e୧୨ ൅ൌ ∑ e୧୩

୬
୩ୀଵ ∗ 	e୩୨. Here operator ‘+’ 

refers to ‘min’ and operator ‘*’ refers to ‘+’ 

For n √s⁄  = 2, Kleene’s algorithm in Fig. 6 unrolls to 
following 10 steps 

 

 
 
 
 
 
 
 
 
 

 
Fig. 8 A n × n matrix divided into n √s⁄  =2 Zones 

KLEENE’S ALGORITHM LOOP UNROLLING FOR ܖ ⁄ܛ√  =2 

ZONES 
ଵଵܯ     1 ൌ ଵଵܯ

∗ 	 	 	 	
	 	
2	 ଵଵܯ ൅ൌܯଵଵ ∗ ଵଵܯ	 ∗ 	ଵଵܯ
3	 ଵଶܯ ൅ൌܯଵଵ ∗ ଵଵܯ	 ∗ 		ଵଶܯ
4	 ଶଵܯ ൅ൌܯଶଵ ∗ ଵଵܯ	 ∗ 		ଵଵܯ
5	 ଶଶܯ ൅ൌ ଶଵܯ	 ∗ ଵଵܯ	 ∗ 		ଵଶܯ
ଶଶܯ														6 ൌ ଶଶܯ	

∗ 	 	 	
7	 ଵଵܯ ൅ൌܯଵଶ ∗ ଶଶܯ	 ∗ 		ଶଵܯ 	 	
ଵଶܯ														8 ൅ൌܯଵଶ ∗ ଶଶܯ	 ∗ 		ଶଶܯ
9	 ଶଵܯ ൅ൌܯଶଶ ∗ ଶଶܯ	 ∗ 		ଶଵܯ
10	 ଶଶܯ ൅ൌܯଶଶ ∗ ଶଶܯ	 ∗ 	ଶଶܯ
 
	
Following simplifications are performed to obtain algorithm 
in Fig.9 

Step 1 :Mଵଵ ൌ Mଵଵ
∗  

Mଵଵ
∗ is the matrix closure of Mଵଵ.	It calculates shortest path 

between every possible pair of vertices in zone1 (ranging 

from 1 to  n 2⁄  ) going through no more vertex higher than 
vertex	n 2⁄ . This solves smaller sized sub problem 
consisting of first n 2⁄  vertices.  

Step 2:Mଵଵ ൅ൌMଵଵ ∗ 	Mଵଵ ∗ Mଵଵ 

This computation is redundant and therefore can be 
removed because if A is a matrix closure (shortest path 
matrix) then A*A=A 

Step 3: Mଵଶ ൅ൌMଵଵ ∗ 	Mଵଵ ∗ Mଵଶ 

Calculates shortest path between every possible pair of 
vertices from zone 1 (ranging from 1 to n 2⁄  ) to zone 2 
(ranging from n 2⁄ ൅ 1  to n  going through no more vertex 
higher than vertex in zone 1. This computation can be 
simplified to Mଵଶ ൅ൌMଵଵ ∗ Mଵଶ by following Mଵଵ ∗
	Mଵଵ ൌ 	Mଵଵ 

Step 4: Mଶଵ ൅ൌMଶଵ ∗ 	Mଵଵ ∗ Mଵଵ 

Calculates shortest path between every possible pair of 
vertices from zone 2 (ranging from n 2⁄ ൅ 1  to n) to zone 1 
(ranging from 1 to n 2⁄ ) going through no more vertex 
higher than vertex in zone 1.This computation can be 
simplified to Mଶଵ ൅ൌMଶଵ ∗ Mଵଵ by following Mଵଵ ∗
	Mଵଵ ൌ 	Mଵଵ 

Step 5: Mଶଶ ൅ൌ 	Mଶଵ ∗ 	Mଵଵ ∗ Mଵଶ 

Calculates shortest path between every possible pair of 
vertices from zone 2 (ranging from n 2⁄ ൅ 1  to n) to zone 2 
(ranging from n 2⁄ ൅ 1  to n) going through no more vertex 
higher than vertex in zone 1.This computation can be 
simplified to Mଶଶ ൅ൌMଶଵ ∗ Mଵଶ by following either  step 3 
or step 4 

Step 6: Computation on line 7 can be postponed to the last 
without affecting the end result 

Following similar simplifications at Line 6, 7, 8, 9 and 10 
following algorithm is reached 

KLEENE_ALGO             KLEENE_ALGO                    REC_KLEENE_ALGO 
  
ଵଵܯ    1 ൌ ଵଵܯ

∗ ܣ    ൌ ܣ  ∗ܣ ൌ  ሻܣሺݎݑܴܿ݁
ଵଶܯ				2 ൅ൌܯଵଵ ∗ ܤ ଵଶܯ ൅ൌ ܣ ∗ ܤ ܤ ൅ൌ ܣ ∗  ܤ
ଶଵܯ				3 ൅ൌܯଶଵ ∗ ܥ ଵଵܯ	 ൅ൌ ܥ ∗ ܥ ܣ ൅ൌ ܥ ∗  ܣ
ଶଶܯ				4 ൅ൌ ଶଵܯ	 ∗ ܦ ଵଶܯ	 ൅ൌ ܥ ∗ ܦ ܤ ൅ൌ ܥ ∗  ܤ
ଶଶܯ		  5 ൌ ଶଶܯ	

∗ ܦ   ൌ ܦ  ∗ܦ ൌ  ሻܦሺݎݑܴܿ݁
ଵଶܯ			 6 ൅ൌܯଵଶ ∗ ܤ ଶଶܯ	 ൅ൌ ܤ ∗ ܤ ܦ ൅ൌ ܤ ∗  ܦ
ଶଵܯ   .7 ൅ൌܯଶଶ ∗ ܥ ଶଵܯ ൅ൌ ܦ ∗ ܥ ܥ ൅ൌ ܦ ∗  ܥ
ଵଵܯ   .8 ൅ൌܯଵଶ ∗ ܣ ଶଵܯ	 ൅ൌ ܤ ∗ ܣ ܥ ൅ൌ ܤ ∗  ܥ
 

Fig. 9 Simplification of Kleene’s Operations. 

 Here Matrix multiplication (MM) operation X	 ൌ 	X ൅
	Y ∗ Z is computed using X୧୨	ୀ	X୧୨ ൅ ∑ Y୧୩ ∗ Z୩୨

୬
୩ୀଵ  where 

scalar addition ሺ൅ሻ is minimum of two numbers i.e. 
a ൅ b ൌ minሺa, bሻand scalar multiplication ሺ∗ሻ is addition 
i.e. a ∗ b ൌ a ൅ b. These MMs are defined in closed semi 
ring. It is clear from the algorithm that it is recursive and in-
place in nature and uses data locality to improve cache 
performance. Recursive calls are made to A and D as 
mentioned in Step 1 and Step 5. 

 

ଵଵܯ ൌ  ܣ
Zone 1 

 ଵଶ= Bܯ

ଶଵܯ ൌ  ଶଶ=Dܯ ܥ
Zone 2 
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D. OpenCL Parallel Implementation of Recursive 
Kleene’s Algorithm 

In recursive Kleene’s algorithm step 2 and step 3 can be 
executed in parallel, likewise step 6 and step 7 can be 
executed in parallel. Fig.10 represents the precedence graph 
for the steps in recursive algorithm 

 
Fig.10 Precedence graph kleene’s operation 

As OpenCL does not support recursion so we have 
implemented recursive function in host program which calls 
OpenCL kernel recursively as shown in Fig.11. This 
recursive nature exploits data locality and increases data 
reuse ratio.  

ALGORITHM OPENCL-PARALLEL-RK(J, N) 
/* J is n × n matrix */ 
1      if (base case) 
2          call OpenCL-Parallel-FW(J, n) 
3      else 
4          divide matrix J in matrices A, B, C & D 
5          n ← n/2 
6          call OpenCL-Parallel-RK(A, n) 
7          for all ݊ଶ matrix elements in parallel do 
8                 call RKMM_KERNEL (B, A, B, n) 
9          end for 
10        for all n2 matrix elements in parallel do 
11               call RKMM_KERNEL (C, C, A, n) 
12        end for 
13        for all n2 matrix elements in parallel do 
14               call RKMM_KERNEL (D, C, B, n) 
15        end for 
16        call OpenCL-Parallel-RK(D, n) 
17        for all n2 matrix elements in parallel do 
18               call RKMM_KERNEL (B, B, D, n) 
19        end for 
20        for all n2 matrix elements in parallel do 
21               call RKMM_KERNEL (C, D, C, n) 
22        end for 
20        for all n2 matrix elements in parallel do 
21               call RKMM_KERNEL (A, B, C, n) 
22        end for 
 

Fig.11. Pseudo code for OpenCL parallel implementation of in-place 
recursive R-Kleene 

The matrix multiply kernel which is called in each recursive 
calls of OpenCL-Parallel-RK(J, n)  is shown in Fig. 12. 

 

KERNEL RKMM_KERNEL(X, Y, Z, N) 
 

1      (i, j) ← getThreadID 
2      for k=1 to ndo 
3       X[i, j] ← min(X[i,  j], Y[i,  k] + Z[k,  j]) 
4      end for 
 

Fig.12. Pseudo code for OpenCL naive MM kernel 

The stopping condition for this recursive implementation is 
when matrix size (i.e. n) becomes equal to a threshold value 
which is also called the base case of our algorithm. In our 
scenario base case is when matrix can be fitted in a single 
workgroup which is 16x16 in case of our GPU. And matrix 
of this size can also be fitted in shared memory. Kernel of 
base case is shown in Fig. 13. 

KERNEL FW_BASE_KERNEL(A, N) 
 

1 (i, j) ← getThreadID 
2 Ms[16,16] //block in Shared memory (SM) 
3 copy related block from Global memory (GM) to 
Ms 
4 for k ← 1 to n do 
5 Ms[i,  j] ← min (Ms[i,  j], Ms[i,  k] + Ms[k,  j]) 
6 end for 
7 copy block Ms from SM to GM 
 

Fig.13. FW kernel pseudo code for base case 

V. EXPERIMENTAL RESULTS 

We have implemented sequential Floyd Warshall’s 
algorithm (FW_Sequential) and sequential recursive 
Kleene’s Algorithm (RK_Sequential). The sequential 
versions of the algorithms have been tested on Intel Core 
i3-2310M (CPU): 2095 MHz clock, 2 GB RAM.  

We have also implemented parallel versions of Floyd 
Warshall’s algorithm (FW_Parallel) and four OpenCL 
parallel recursive Kleene’s algorithm 
(RK_Parallel_AMD6450, RK_Parallel_AMD6850, 
RK_parallel_NVIDEA, RK_Parallel_Intel)on four different 
hardware platforms using OpenCL SDK 2.0 as given below 

Intel Core i3-2310M (CPU): 4 Compute units, 2095 MHz 
clock, 2048MB Global Memory., 32KB Local Memory, 
1024 work group size with AMD APP SDK v2.8. 

AMD Radeon HD 6450(GPU):  2 Compute units, 625 MHz 
clock, 2048MB Global Memory., 32KB Local Memory., 
256 work group size on a system having Intel Core i5 CPU 
650 @ 3.2 GHz and 2048MB RAM with AMD APP SDK 
v2.8. 

AMD Radeon HD 6850 (GPU): 12 Compute units, 860 
MHz clock, 1024MB Global Memory, 32KB Local 
Memory, 256 work group size on a system having Intel 
Core i3 CPU 530 @ 2.93 GHz and 4096MB RAM with 
AMD APP SDK v 2.8. 

NVIDIA GeForce GT 630M (GPU): 2 Compute units, 950 
MHz clock, 1023MB Global Memory, 48 KB Local 
Memory, 1024 work group size on a system having Intel 
Core i5 CPU-3210M @ 2.5GHz and 4096MB RAM 
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We have tested our results on various randomly generated 
dense graphs having edges of the order of Оሺ݊ଶሻ. Random 
weight values between 1 to 10 are assigned to edges of 
graph. All results of parallel implementation for APSP 
problem are verified with FW sequential implementation on 
host CPU. For measuring time, we have considered total 
kernel execution time. 

A. Results of OpenCL parallel vs Serial Implementaion  
In Fig. 14, log plot of execution time in milliseconds and 
no. of nodes in a graph is presented. OpenCL parallel 
implementation for RK based approach is tested on various 
GPU devices and also on CPU device. Timings for RK & 
FW sequential implementation are also shown.  

 
Fig.14 Execution time of sequential and OpenCL parallel Algorithms 

Speedup for RK based OpenCL implementation with 
respect to FW sequential is shown in Fig. 16 and speedup 
for RK based OpenCL implementation with respect to RK 
sequential is shown in Fig. 15 

 
Fig.15. Speedup for RK parallel implementation w.r.t. RK serial 

implementation 

 

Fig.16. Speedup for RK parallel implementation w.r.t. FW serial 
implementation 

In Table 1, speedup comparison for RK based OpenCL 
parallel implementation on various devices over RK serial 
CPU implementation is shown. 

TABLE 1. SPEEDUP COMPARISON FOR VARIOUS DEVICES 

No. of 
nodes 

Intel CPU AMD 6450 
GPU 

AMD 
6850  
GPU 

NVIDIA GT 
630M GPU 

64 3.4 7.5 9.0 11.2 
128 3.5 9.3 11.4 17.1 
256 4.7 47.8 51.7 66.7 
512 5.9 111.4 157.1 202.9 

1024 6.3 171.6 317.9 409.3 
2048 9.7 160.2 308.5 521.9 
4096 10.4 165.6 318.6 489.7 

 

B Comparison between parallel RK & parallel FW 
implementation on same GPU 

 
Fig. 17, Fig.18 and Fig. 19 shows comparison between RK 
OpenCL parallel and FW OpenCL parallel implementation 
on various GPUs. Our RK based OpenCL implementation 
takes lesser time in comparison to FW OpenCL 
implementation on same GPU device. 

 

 
Fig.17. Comparison between RK based OpenCL parallel and FW 

OpenCL parallel implementation on AMD 6450 GPU 

 

 

Fig.18. Comparison between RK based OpenCL parallel and FW 
OpenCL parallel implementation on AMD 6850 GPU 
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Fig.19. Comparison between RK based OpenCL parallel and FW 
OpenCL parallel implementation on NVIDIA 630 GPU 

VI. CONCLUSIONS AND FUTURE WORK 

OpenCL parallel implementation showed a significant 
speedup up to 521x on NVIDIA GPU’s, up to 318x on 
AMD 6850 GPU, up to 171x on AMD 6450 GPU and up to 
10 x on Intel CPU with respect to RK serial 
implementation. Also it is clear from execution time plots 
in Fig. 17, Fig. 18 and Fig.19 OpenCL parallel recursive 
algorithm shows a significant speedup over OpenCL 
parallel Floyd Warshall’s algorithm over same GPU. 

As OpenCL can execute on wide variety of platforms 
there is a significant scope for hybrid implementation for 
solving APSP problem that involves heterogeneous 
computing environment consisting of CPU and GPU both. 
An appropriate portion of the work can be offloaded to 
CPU and GPU so as to utilize these processing devices at 
its best and to obtain further speedup. 
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