
A Parallel Recursive Approach for Solving All
Pairs Shortest Path Problem on GPU using

OpenCL

Manish Pandey
Department of Computer Science Engineering

Maulana Azad National Institute of Technology
Bhopal, India

Sanjay Sharma
Department of Mathematics and Computer Applications

Maulana Azad National Institute of Technology
Bhopal, India

Abstract—All-pairs shortest path problem(APSP) finds a
large number of practical applications in real world. We owe
to present a highly parallel and recursive solution for solving
APSP problem based on Kleene’s algorithm. The proposed
parallel approach for APSP is implemented using an open
standard framework OpenCL which provides a development
environment for utilizing massive parallel capabilities of
Multi core CPU and Many-Core-Processors such as Graphics
Processing Unit (GPU). Moreover due to inherent nature of
data reuse in the algorithm, shared memory of these
processors is exploited to achieve considerable speedup. Our
experiments demonstrate a speedup gain up to 521x over
NVIDIA GeForce GT 630M GPU and a speedup up to 10x
over Intel Core i3-2310M CPU.The proposed OpenCL
solution for APSP is for directed and dense graphs with no
negative cycles. Like Floyd-Warshall (FW), this approach is
also in-place in nature and therefore requires no extra space.

Keywords—OpenCL; Graphics processing Unit (GPU);All
Pairs Shortest Path(APSP); in-place; FW(Flowd Warshall);
RK (Recursive Kleene); Many Core Processors

I. INTRODUCTION

The All-Pairs Shortest Path(APSP) is a well-known
problem in the field of computer science and has varied
application areas inclusive of, but not restricted to, IP
routing, wireless sensor networks, VLSI design and
Artificial Intelligence. In most of the cases an instance of
the problem is represented in the form of directed weighted
graph stored in the form of cost adjacency matrix.

Consider a weighted graph G (V, E) stored in the
form of weight adjacency matrix represented by W where
,݅〉 ௜௝ϵ W for allݓ ݆〉 ϵ E.

௜௝ݓ

ൌ ቐ
0						 		݂݅	݅ ൌ ݆

,݅〉	݁݃݀݁	݂݋	ݐ݄݃݅݁ݓ ݆〉					 			݂݅	݅	 ് ݆	ܽ݊݀	〈݅, ܧ	߳	〈݆
						ݕݐ݂݅݊݅݊݅ 			݂݅	݅	 ് ݆	ܽ݊݀	〈݅, ܧ	߳〈݆

Although the theoretical time complexity of well-known
existing sequential approaches for solving APSP such as
Floyd Warshall’s [14] or Dijkstra’s algorithm [21] is
Оሺ݊ଷሻ, and is reasonably good, but many applications such
as VLSI design or wireless sensor networks, IP routing for
large networks [7] etc requires size of input data to be very

large [2] and in such cases time consumed by algorithm
grows drastically beyond acceptable levels.

Parallel approaches for solving APSP may involve running
a Single Source Shortest Path (SSSP) algorithm for all |V|
vertices [3] or by using parallel versions of APSP
algorithms [4][18]or Johnson’s Algorithm[21]. Although
these algorithms are in-place in nature and are capable of
providing high level of parallelism but these algorithms
lack inherent data reuse and therefore cannot fully exploit
architectural capabilities of GPU. Bader et al. [6] have used
supercomputer CRAY MTA-2 to perform breadth-first
search on very large graph. A considerable high speed up
can be achieved using such massive parallel computers but
many core computers such as GPU (being specialized
purpose processor) offers high performance at relatively
very low cost. Penner et al[5][10] have presented algorithm
optimization for improving cache performance but in
contrast to this die(chip) area in case of Many Core
Processors such as GPU, is dedicated largely for ALU’s
than cache [23] and therefore only locality of reference
based optimization may not prove to be much useful.

 Contribution of this paper: This paper presents a parallel
recursive approach for solving APSP problem on large
graphs using open standard programming framework
OpenCL that exploits the architectural benefits of Multi
Core Processors such as CPU or massive Many Core
Processors such as GPU as a processing device. The key
features of this approach are highly parallel, high data reuse
and in-place nature

Following may be attributed to the key contributions of
this paper

 A high level of parallelism is obtained by appropriately
distributing SIMD (Single Instruction Multiple Data) load
over CPU/GPU cores in the form of work group

 By appropriately choosing the block size to fit into local
shared memory of the GPU to reuse the data in future

GPU provides large global data share. Blocked parallel
approach is in-place in nature so no extra memory is needed
for storing intermediate results and therefore large graph
problems can also be solved

Solution is implemented using open standard
programming framework OpenCL that can be executed

Manish Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8198-8204

www.ijcsit.com 8198

over wide variety of low cost hardware such as CPU, GPU,
FPGA’s and DSP’s etc. and thus provides portable and cost
effective solution. Rest of the paper is organized as follows.

Section II puts insight into a brief description of
OpenCL platform model and GPU as a computational
resource. Section III describes related work in the field of
APSP. OpenCL Parallel approaches for solving APSP
problem is discussed in section IV. Experimental results are
demonstrated in section V and finally section VI presents
Conclusion and scope for the future work.

II. OPENCL FRAMEWORK

OpenCL is an open standard framework for parallel
programming composed of several computational resources
like CPUs, GPUs, DSPs, and FPGAs etc. A considerable
speed up can be achieved by utilizing all such
computational resources. The main advantage with OpenCL
as compared to its counterpart CUDA [15], is its portability
among cross vendor hardware platforms [25].

OpenCL framework comprises of following
components [23][24]:

A. OpenCL Platform Model

OpenCL platform model consists of CPU as a host and
OpenCL devices such as CPU, GPU or other processors.
An OpenCL device is a collection of compute units which
is further composed of many processing elements

Fig. 1. OpenCL Platform Model [24]

All the processing elements within a compute unit will
execute same sequence of instructions. While compute units
can be executed independently

B. OpenCL Execution Model

OpenCL execution model comprises of two
components: a host program that executes over CPU and
kernel(s) that executes over OpenCL devices. OpenCL
execution model provides a way for submitting kernels for
execution. When this command is submitted it creates a
collection of work-items (threads). Each work-item
executes the same sequence of instructions as defined by a
single kernel on different data selected through unique
identification (global or local). Work-items can be
organized in the form of workgroups that execute
concurrently over the processing elements of the same
compute unit.

C. OpenCL Memory Model

OpenCL memory model defines five different regions
of memory and the way they are related to platform and
execution models (Fig. 2).

 Host memory: This memory is limited to host only
and OpenCL only defines the interaction of host
memory with OpenCL objects.

 Global memory: All work items in all work groups
have read/write access to this region of memory
and can be allocated only by the host during the
runtime.

 Constant memory: Region of memory which stays
constant throughout the execution of kernel.
Work-items have read only access to this region.

 Local memory: Region of memory is local to work
group. It can be implemented dedicatedly on
OpenCL device or may be mapped on to regions
of Global memory.

 Private memory: Region that is private for work-
tem.

Fig. 2. OpenCL Memory Model [24]

D. OpenCL Programming Model

OpenCL supports two programming models: data
parallel and task parallel models. However hybrid model
can also be used.

III. RELATED WORK

Many algorithms have been proposed for solving APSP
problem using Floyd-Warshall (FW) yet there is large scope
in enhancing its performance. Using Johnson’s algorithm,
we can find all pair shortest paths in Оሺ݊ଶ݈݊݃݋ ൅ ݊݁ሻ time.
Johnson’s algorithm uses both Dijkstra [18] and Bellman-
Ford [18] algorithms as subroutines. Owens J. D puts
insight into GPU computing [22] and a survey on general-
purpose computation on graphics hardware [20].As the
instances of the problem involving graphs are generally
represented in the form of adjacency matrix some fast
matrix multiplication algorithm in [6][19] are also our area
of concern.

The work presented in this paper is a recursive parallel
OpenCL implementation of APSP that can execute on wide
variety of many core processors and Kleene’s algorithm
[11] was our starting point

A sequential divide and conquer approach using R-
Kleene’s algorithm have been proposed for dense graphs
for APSP in [12]. However our implementation is 512x
times faster on larger graphs due to massive parallel work-
items (threads) executing simple Comp-Add (Comparison-

Manish Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8198-8204

www.ijcsit.com 8199

Addition) operations on low power specialized purpose
cores (ALU’s)

Similar but independent to our work there are some
CUDA based implementations for speeding up large graph
algorithms on GPU [8][16], but they are for vendor specific
NVIDIA[29] hardware. In contrast to this our solution runs
on wide variety of platforms/vendor independent
hardware.CPU implementations have several limitations of
performance so some cache optimization techniques and
cache friendly implementations are given in [1][5][10][17]
using recursion for dense graphs. But unlike cache which is
exploited by the virtue of locality of reference, local
memory of GPU can be explicitly exploited and is
programmer controlled.

IV. OPENCL IMPLEMENTATION FOR SOLVING APSP

PROBLEM

A. APSP Problem

APSP is the most fundamental problem in graph theory
and our solution will follow a well-known algorithm called
Floyd-Warshall (FW)[21]. FW sequential implementation
uses three nested loops.

Consider a weighted graph G (V, E) stored using
adjacency matrix represented by a weight matrix W where
௜௝ܹ߳ for all ൏ݓ ݅	, ݆ ൐ .ܧ	߳

w୧୨ ൌ ቐ
0																										if	i ൌ j

weight	of	edge	〈i, j〉														if	i	 ് j	and	〈i, j〉ϵ	E
infinity																																							if	i	 ് j	and	〈i, j〉ϵ	E

ALGORITHM FLOYD-WARSHALL(W)

1 n← rows (W)
 ሺ଴ሻ← Wܦ 2
3 for k = 1 to n do
4 for i = 1 to n do
5 for j = 1 to n do

6 ݀௜௝
ሺ௞ሻ ← ݉݅݊	ሺ݀௜௝

ሺ௞ିଵሻ, ݀௜௞
ሺ௞ିଵሻ ൅ ݀௞௝

ሺ௞ିଵሻሻ
7 end for
8 end for
9 end for

Fig. 3. FW Algorithm pseudocode

B. OpenCL Parallel Implementation of Floyd-Warshall

Parallel implementation of FW algorithm requires

Nଶ	work items to be created, where N is the total number of
nodes. So, each work item ሺ݅, ݆ሻ finds the shortest path
between nodes i and j. In parallel implementation a 2-D
kernel FW_KERNEL (A, k) is designed as shown in Fig. 5

Pseudo code for OpenCL parallel FW
OPENCL_PARALLEL_FW (A, N) is shown in Fig.4, which
calls kernel FW_KERNEL (A, k)

ALGORITHM OPENCL_PARALLEL_FW(A, N)

1 for k = 1 to n do
2 for all elements in matrix A, where 1≤ i, j ≤ n in

parallel do
3 call FW_KERNEL (A, k)
4 end for
 end for

Fig. 4. Pseudo code for OpenCL parallel FW algorithm

KERNEL FW_KERNEL(A, K)

1 (i, j) ← getThreadID
2 A[i, j] ← min(A[i, j], A[i, k] + A[k, j])

Fig. 5. Pseudo code for FW kernel in OpenCL

In each kth iteration of outermost for loop, ݊ଶ work-
items (threads) invokes kernel that computes shortest path
between every possible pair of vertices 〈i, j〉 going through
no vertex higher than vertex k ,each using its thread_idሺi, jሻ,
in parallel, where 1	 ൑ 	݅	, ݆	 ൑ 	݊. In final iteration when k
= n is completed, output matrix A will hold shortest path
between every possible pair of vertices 〈i, j〉 going through
no more vertex higher than vertex n that is the shortest
distance between all-pairs of nodes.

The theoretical time complexity of parallel Floyd
Warshall’s algorithm is О(n) because outermost for loop
executes sequentially О(n) times where as inner parallel for
statement takes О(1) time, assuming nଶ processing
elements

C. In-place Parallel Recursive approach to APSP problem
using kleene’s algorithm

The recursive approach for solving APSP is inspired by

Kleene’s algorithm [2], as shown in Fig.6, for finding
transitive closure that computes the existence of path
between every possible pair of vertices〈i, j〉.

Kleene’s algorithm divides the nodes of the graph into
	n √s⁄ zones as shown in Fig.7. Nodes 1 to √s will be in
zone 1, nodes √s +1 through 2√s will be in zone 2, and so
on. Thus adjacency matrix corresponding to the graph is
divided into nଶ s⁄ sub matrices each having size	√s ൈ √s. A
sub matrix M୧୨ refers all the edge from nodes in zone i to
nodes in zone j.

ALGORITHM KLEENE’S_TANSITIVE_CLOSURE(A, N)

1/* Divide the graph ’A’ into 	݊ ⁄ݏ√ zones */
2 for k = 1 to 	݊ ⁄ݏ√ do
௞,௞ܯ	݁ݐݑ݌݉݋ܥ */ 3

∗ , the transitive closure of ܯ௞,௞*/
௞,௞ܯ =௞,௞ܯ 4

∗
5 for i = 1 to 	݊ ⁄ݏ√ do
6 for j = 1 to 	݊ ⁄ݏ√ do
 ௞,௝ܯ × ௞,௞ܯ × ௜,௞ܯ	+ ௜,௝ܯ=௜,௝ܯ 7
8 end for
9 end for
10 end for

Fig. 6. Pseudo code for FW kernel in Open

Manish Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8198-8204

www.ijcsit.com 8200

 ଵ,ଵܯ

ଵ,௡ܯ ⋯ ଵ,ଶܯ √௦⁄

ଶ,௡ܯ ⋯ ଶ,ଶܯ ଶ,ଵܯ √௦⁄ ,

⋮ ⋮ ⋮

௡ܯ √௦	,ଵ⁄ ௡ܯ √௦	,ଶ⁄ ௡ܯ ⋯ √௦⁄ ,௡ √௦⁄

Fig. 7. A n×n matrix having 	n √s⁄ Zones

 Each entry e୧୨ ∈ 	M୧୨	 refers to the shortest path from
every possible vertex from zone ‘i’ to zone ‘j’ going
through no more zone greater than zone ‘k’ and is
computed using 	e୧୨ ൅ൌ ∑ e୧୩

୬
୩ୀଵ ∗ 	e୩୨. Here operator ‘+’

refers to ‘min’ and operator ‘*’ refers to ‘+’

For n √s⁄ = 2, Kleene’s algorithm in Fig. 6 unrolls to
following 10 steps

Fig. 8 A n × n matrix divided into n √s⁄ =2 Zones

KLEENE’S ALGORITHM LOOP UNROLLING FOR ܖ ⁄ܛ√ =2

ZONES
ଵଵܯ 1 ൌ ଵଵܯ

∗ 	 	 	 	
	 	
2	 ଵଵܯ ൅ൌܯଵଵ ∗ ଵଵܯ	 ∗ 	ଵଵܯ
3	 ଵଶܯ ൅ൌܯଵଵ ∗ ଵଵܯ	 ∗ 		ଵଶܯ
4	 ଶଵܯ ൅ൌܯଶଵ ∗ ଵଵܯ	 ∗ 		ଵଵܯ
5	 ଶଶܯ ൅ൌ ଶଵܯ	 ∗ ଵଵܯ	 ∗ 		ଵଶܯ
ଶଶܯ														6 ൌ ଶଶܯ	

∗ 	 	 	
7	 ଵଵܯ ൅ൌܯଵଶ ∗ ଶଶܯ	 ∗ 		ଶଵܯ 	 	
ଵଶܯ														8 ൅ൌܯଵଶ ∗ ଶଶܯ	 ∗ 		ଶଶܯ
9	 ଶଵܯ ൅ൌܯଶଶ ∗ ଶଶܯ	 ∗ 		ଶଵܯ
10	 ଶଶܯ ൅ൌܯଶଶ ∗ ଶଶܯ	 ∗ 	ଶଶܯ

	
Following simplifications are performed to obtain algorithm
in Fig.9

Step 1 :Mଵଵ ൌ Mଵଵ
∗

Mଵଵ
∗ is the matrix closure of Mଵଵ.	It calculates shortest path

between every possible pair of vertices in zone1 (ranging

from 1 to n 2⁄) going through no more vertex higher than
vertex	n 2⁄ . This solves smaller sized sub problem
consisting of first n 2⁄ vertices.

Step 2:Mଵଵ ൅ൌMଵଵ ∗ 	Mଵଵ ∗ Mଵଵ

This computation is redundant and therefore can be
removed because if A is a matrix closure (shortest path
matrix) then A*A=A

Step 3: Mଵଶ ൅ൌMଵଵ ∗ 	Mଵଵ ∗ Mଵଶ

Calculates shortest path between every possible pair of
vertices from zone 1 (ranging from 1 to n 2⁄) to zone 2
(ranging from n 2⁄ ൅ 1 to n going through no more vertex
higher than vertex in zone 1. This computation can be
simplified to Mଵଶ ൅ൌMଵଵ ∗ Mଵଶ by following Mଵଵ ∗
	Mଵଵ ൌ 	Mଵଵ

Step 4: Mଶଵ ൅ൌMଶଵ ∗ 	Mଵଵ ∗ Mଵଵ

Calculates shortest path between every possible pair of
vertices from zone 2 (ranging from n 2⁄ ൅ 1 to n) to zone 1
(ranging from 1 to n 2⁄) going through no more vertex
higher than vertex in zone 1.This computation can be
simplified to Mଶଵ ൅ൌMଶଵ ∗ Mଵଵ by following Mଵଵ ∗
	Mଵଵ ൌ 	Mଵଵ

Step 5: Mଶଶ ൅ൌ 	Mଶଵ ∗ 	Mଵଵ ∗ Mଵଶ

Calculates shortest path between every possible pair of
vertices from zone 2 (ranging from n 2⁄ ൅ 1 to n) to zone 2
(ranging from n 2⁄ ൅ 1 to n) going through no more vertex
higher than vertex in zone 1.This computation can be
simplified to Mଶଶ ൅ൌMଶଵ ∗ Mଵଶ by following either step 3
or step 4

Step 6: Computation on line 7 can be postponed to the last
without affecting the end result

Following similar simplifications at Line 6, 7, 8, 9 and 10
following algorithm is reached

KLEENE_ALGO KLEENE_ALGO REC_KLEENE_ALGO

ଵଵܯ 1 ൌ ଵଵܯ

∗ ܣ ൌ ܣ ∗ܣ ൌ ሻܣሺݎݑܴܿ݁
ଵଶܯ				2 ൅ൌܯଵଵ ∗ ܤ ଵଶܯ ൅ൌ ܣ ∗ ܤ ܤ ൅ൌ ܣ ∗ ܤ
ଶଵܯ				3 ൅ൌܯଶଵ ∗ ܥ ଵଵܯ	 ൅ൌ ܥ ∗ ܥ ܣ ൅ൌ ܥ ∗ ܣ
ଶଶܯ				4 ൅ൌ ଶଵܯ	 ∗ ܦ ଵଶܯ	 ൅ൌ ܥ ∗ ܦ ܤ ൅ൌ ܥ ∗ ܤ
ଶଶܯ		 5 ൌ ଶଶܯ	

∗ ܦ ൌ ܦ ∗ܦ ൌ ሻܦሺݎݑܴܿ݁
ଵଶܯ			 6 ൅ൌܯଵଶ ∗ ܤ ଶଶܯ	 ൅ൌ ܤ ∗ ܤ ܦ ൅ൌ ܤ ∗ ܦ
ଶଵܯ .7 ൅ൌܯଶଶ ∗ ܥ ଶଵܯ ൅ൌ ܦ ∗ ܥ ܥ ൅ൌ ܦ ∗ ܥ
ଵଵܯ .8 ൅ൌܯଵଶ ∗ ܣ ଶଵܯ	 ൅ൌ ܤ ∗ ܣ ܥ ൅ൌ ܤ ∗ ܥ

Fig. 9 Simplification of Kleene’s Operations.

 Here Matrix multiplication (MM) operation X	 ൌ 	X ൅
	Y ∗ Z is computed using X୧୨	ୀ	X୧୨ ൅ ∑ Y୧୩ ∗ Z୩୨

୬
୩ୀଵ where

scalar addition ሺ൅ሻ is minimum of two numbers i.e.
a ൅ b ൌ minሺa, bሻand scalar multiplication ሺ∗ሻ is addition
i.e. a ∗ b ൌ a ൅ b. These MMs are defined in closed semi
ring. It is clear from the algorithm that it is recursive and in-
place in nature and uses data locality to improve cache
performance. Recursive calls are made to A and D as
mentioned in Step 1 and Step 5.

ଵଵܯ ൌ ܣ
Zone 1

 ଵଶ= Bܯ

ଶଵܯ ൌ ଶଶ=Dܯ ܥ
Zone 2

Manish Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8198-8204

www.ijcsit.com 8201

D. OpenCL Parallel Implementation of Recursive
Kleene’s Algorithm

In recursive Kleene’s algorithm step 2 and step 3 can be
executed in parallel, likewise step 6 and step 7 can be
executed in parallel. Fig.10 represents the precedence graph
for the steps in recursive algorithm

Fig.10 Precedence graph kleene’s operation

As OpenCL does not support recursion so we have
implemented recursive function in host program which calls
OpenCL kernel recursively as shown in Fig.11. This
recursive nature exploits data locality and increases data
reuse ratio.

ALGORITHM OPENCL-PARALLEL-RK(J, N)
/* J is n × n matrix */
1 if (base case)
2 call OpenCL-Parallel-FW(J, n)
3 else
4 divide matrix J in matrices A, B, C & D
5 n ← n/2
6 call OpenCL-Parallel-RK(A, n)
7 for all ݊ଶ matrix elements in parallel do
8 call RKMM_KERNEL (B, A, B, n)
9 end for
10 for all n2 matrix elements in parallel do
11 call RKMM_KERNEL (C, C, A, n)
12 end for
13 for all n2 matrix elements in parallel do
14 call RKMM_KERNEL (D, C, B, n)
15 end for
16 call OpenCL-Parallel-RK(D, n)
17 for all n2 matrix elements in parallel do
18 call RKMM_KERNEL (B, B, D, n)
19 end for
20 for all n2 matrix elements in parallel do
21 call RKMM_KERNEL (C, D, C, n)
22 end for
20 for all n2 matrix elements in parallel do
21 call RKMM_KERNEL (A, B, C, n)
22 end for

Fig.11. Pseudo code for OpenCL parallel implementation of in-place
recursive R-Kleene

The matrix multiply kernel which is called in each recursive
calls of OpenCL-Parallel-RK(J, n) is shown in Fig. 12.

KERNEL RKMM_KERNEL(X, Y, Z, N)

1 (i, j) ← getThreadID
2 for k=1 to ndo
3 X[i, j] ← min(X[i, j], Y[i, k] + Z[k, j])
4 end for

Fig.12. Pseudo code for OpenCL naive MM kernel

The stopping condition for this recursive implementation is
when matrix size (i.e. n) becomes equal to a threshold value
which is also called the base case of our algorithm. In our
scenario base case is when matrix can be fitted in a single
workgroup which is 16x16 in case of our GPU. And matrix
of this size can also be fitted in shared memory. Kernel of
base case is shown in Fig. 13.

KERNEL FW_BASE_KERNEL(A, N)

1 (i, j) ← getThreadID
2 Ms[16,16] //block in Shared memory (SM)
3 copy related block from Global memory (GM) to
Ms
4 for k ← 1 to n do
5 Ms[i, j] ← min (Ms[i, j], Ms[i, k] + Ms[k, j])
6 end for
7 copy block Ms from SM to GM

Fig.13. FW kernel pseudo code for base case

V. EXPERIMENTAL RESULTS

We have implemented sequential Floyd Warshall’s
algorithm (FW_Sequential) and sequential recursive
Kleene’s Algorithm (RK_Sequential). The sequential
versions of the algorithms have been tested on Intel Core
i3-2310M (CPU): 2095 MHz clock, 2 GB RAM.

We have also implemented parallel versions of Floyd
Warshall’s algorithm (FW_Parallel) and four OpenCL
parallel recursive Kleene’s algorithm
(RK_Parallel_AMD6450, RK_Parallel_AMD6850,
RK_parallel_NVIDEA, RK_Parallel_Intel)on four different
hardware platforms using OpenCL SDK 2.0 as given below

Intel Core i3-2310M (CPU): 4 Compute units, 2095 MHz
clock, 2048MB Global Memory., 32KB Local Memory,
1024 work group size with AMD APP SDK v2.8.

AMD Radeon HD 6450(GPU): 2 Compute units, 625 MHz
clock, 2048MB Global Memory., 32KB Local Memory.,
256 work group size on a system having Intel Core i5 CPU
650 @ 3.2 GHz and 2048MB RAM with AMD APP SDK
v2.8.

AMD Radeon HD 6850 (GPU): 12 Compute units, 860
MHz clock, 1024MB Global Memory, 32KB Local
Memory, 256 work group size on a system having Intel
Core i3 CPU 530 @ 2.93 GHz and 4096MB RAM with
AMD APP SDK v 2.8.

NVIDIA GeForce GT 630M (GPU): 2 Compute units, 950
MHz clock, 1023MB Global Memory, 48 KB Local
Memory, 1024 work group size on a system having Intel
Core i5 CPU-3210M @ 2.5GHz and 4096MB RAM

Manish Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8198-8204

www.ijcsit.com 8202

We have tested our results on various randomly generated
dense graphs having edges of the order of Оሺ݊ଶሻ. Random
weight values between 1 to 10 are assigned to edges of
graph. All results of parallel implementation for APSP
problem are verified with FW sequential implementation on
host CPU. For measuring time, we have considered total
kernel execution time.

A. Results of OpenCL parallel vs Serial Implementaion
In Fig. 14, log plot of execution time in milliseconds and
no. of nodes in a graph is presented. OpenCL parallel
implementation for RK based approach is tested on various
GPU devices and also on CPU device. Timings for RK &
FW sequential implementation are also shown.

Fig.14 Execution time of sequential and OpenCL parallel Algorithms

Speedup for RK based OpenCL implementation with
respect to FW sequential is shown in Fig. 16 and speedup
for RK based OpenCL implementation with respect to RK
sequential is shown in Fig. 15

Fig.15. Speedup for RK parallel implementation w.r.t. RK serial

implementation

Fig.16. Speedup for RK parallel implementation w.r.t. FW serial
implementation

In Table 1, speedup comparison for RK based OpenCL
parallel implementation on various devices over RK serial
CPU implementation is shown.

TABLE 1. SPEEDUP COMPARISON FOR VARIOUS DEVICES

No. of
nodes

Intel CPU AMD 6450
GPU

AMD
6850
GPU

NVIDIA GT
630M GPU

64 3.4 7.5 9.0 11.2
128 3.5 9.3 11.4 17.1
256 4.7 47.8 51.7 66.7
512 5.9 111.4 157.1 202.9

1024 6.3 171.6 317.9 409.3
2048 9.7 160.2 308.5 521.9
4096 10.4 165.6 318.6 489.7

B Comparison between parallel RK & parallel FW
implementation on same GPU

Fig. 17, Fig.18 and Fig. 19 shows comparison between RK
OpenCL parallel and FW OpenCL parallel implementation
on various GPUs. Our RK based OpenCL implementation
takes lesser time in comparison to FW OpenCL
implementation on same GPU device.

Fig.17. Comparison between RK based OpenCL parallel and FW

OpenCL parallel implementation on AMD 6450 GPU

Fig.18. Comparison between RK based OpenCL parallel and FW
OpenCL parallel implementation on AMD 6850 GPU

Manish Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8198-8204

www.ijcsit.com 8203

Fig.19. Comparison between RK based OpenCL parallel and FW
OpenCL parallel implementation on NVIDIA 630 GPU

VI. CONCLUSIONS AND FUTURE WORK

OpenCL parallel implementation showed a significant
speedup up to 521x on NVIDIA GPU’s, up to 318x on
AMD 6850 GPU, up to 171x on AMD 6450 GPU and up to
10 x on Intel CPU with respect to RK serial
implementation. Also it is clear from execution time plots
in Fig. 17, Fig. 18 and Fig.19 OpenCL parallel recursive
algorithm shows a significant speedup over OpenCL
parallel Floyd Warshall’s algorithm over same GPU.

As OpenCL can execute on wide variety of platforms
there is a significant scope for hybrid implementation for
solving APSP problem that involves heterogeneous
computing environment consisting of CPU and GPU both.
An appropriate portion of the work can be offloaded to
CPU and GPU so as to utilize these processing devices at
its best and to obtain further speedup.

REFERENCES
[1] Rothberg, M.L.E., Wolfe, M., “The cache performance and

optimizations of blocked algorithms”. In: Proceedings of the Fourth
International Conference on Architectural Support for Programming
Languages and Operating System, pp. 63–74, 1991.

[2] Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry, “Challenges
in parallel graph processing,” Parallel Processing Letters, vol. 17,
no. 1, pp. 5–20, 2007

[3] P. Mateti, Cleveland, Ohio, N.Deo, “Parallel Algorithms for Single
Source Shortest Path Problems” Computing 29 Springer, pp 31-49

[4] A. Frieze and L. Rudolph, "A parallel algorithm for all pairs shortest
paths in a random graph", Technical Report, Dept. of Com. Sci.,
Carnegie-Mellon Univ. (1982).

[5] Park, J., Penner, M., Prasanna, V., “Optimizing graph algorithms for
improved cache performance”. In: Proc. of International Parallel and
Distributed Processing Symposium, 2002.

[6] K. Fatahalian, J. Sugerman, P. Hanrahan, “Understanding the
efficiency of GPU algorithms for matrix–matrix multiplication”, in:

HWWS ’04: Proceedings of the ACM SIGGRAPH/
EUROGRAPHICS Conference, ACM, New York, 2004, pp. 133–
137.

[7] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and S. Zhang. “IP
routing processing with graphic processors”. In DATE ’10, March
2010.

[8] P. Harish, P. J. Narayanan, “Accelerating large graph algorithms on
the GPU using CUDA”, in: Proc. of 14th Int’l Conf. High
Performance Computing (HiPC’07), Dec. 2007.

[9] David A. Badar, K. Madduri, “Designing multithreaded algorithms
for breadth-first search and st-connectivity on the Cray MTA-2”, in:
ICPP, pages 523-530, 2006.

[10] Penner, M., Prasanna, V., “Cache-friendly implementations of
transitive closure”, in: Proceedings of the International Conference
on Parallel Architectures and Compilation Techniques, 2001.

[11] Ullman, J., Yannakakis, M.: The input/output complexity of
transitive closure. In: Proceedings of the1990 ACM SIGMOD
International Conference on Management of Data, Volume 19,
1990.

[12] Paolo D’Alberto, A. Nicolau, “R-Kleene: a high-performance
divide-and-conquer algorithm for the all-pair shortest path for
densely connected networks”, Algorithmica 47 (2) (2007) pp. 203–
213.

[13] NVIDIA OpenCL Resources, http://developer.nvidia.com/opencl.
[14] Floyd, R.: Algorithm 97: Shortest path. Communications of the

ACM 5 (1962).
[15] OpenCL 1.2 reference pages, KHRONOS, 2012.

http://www.khronos.org/registry/cl/sdk/1.2/docs/ man/xhtml.
[16] Gary J. Katz, Joseph T. KiderJr, “All-Pairs Shortest-Paths for Large

Graphs on the GPU”, in: Proceedings of the 23rd ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware,
pages 47-55, 2008.

[17] Govindaraju N. K., Manocha D., “Cache efficient numerical
algorithms using graphics hardware”. Parallel Computing 33, 10-11
(2007), 663–684.

[18] Han S.-C., Franchetti f., Püschel M., “Program generation for the
all-pairs shortest path problem”. In: Parallel Architectures and
Compilation Tech-niques (PACT) (2006), pp. 222–232.

[19] Larsen E., Mcallister D., “Fast matrix multiplies using graphics
hardware”. In: Supercomputing, ACM/IEEE 2001 Conference (10-
16 Nov. 2001), 43–43.

[20] Owens J. D., Luebke D., Govindaraju N., Harris M., Krüger J.,
Lefohn A. E., Purcell T, “A survey of general-purpose computation
on graphics hardware”. In: Computer Graphics Forum 26, 1 (Mar.
2007), 80–113.

[21] Thomas H.Cormen, Charles E. Leiserson, Ronald L. Rivest and
Clittord Stein, “An Introduction To Algorithms”, McGraw-Hill
Book Publication, First Edition, 1990.

[22] Owens J.D., Davis, Houston, M., Luebke, D., Green, S., “GPU
Computing”, in: Proceedings of the IEEE, Volume: 96 , Issue: 5 ,
2008.

[23] AMD Inc., “AMD Acclerated Parallel Processing OpenCL
Programming Guide”, July 2012.

[24] A. Munshi, B. R. Gaster, T.G. Mattson, J. Fung, D. Ginsburg,
“OpenCL Programming Guide”, Addison-Wesley pub., 2011.

[25] OpenCL Specification, http://www.khronos.org/
registry/cl/specs/opencl-1.2.pdf.

Manish Pandey et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 8198-8204

www.ijcsit.com 8204

